Системы исчисления
Память человека удивительная штука, несмотря на все архивы, исторические записи и сводки нам свойственно забывать все — даже имена великих изобретателей. Не один историк не сможет ответить на вопрос, кто был открывателем колеса или гончарного круга. Также никто не сможет вспомнить, кто первый задал вопрос, который мы используем каждый день: “Сколько?”, придумав тем самым первую систему исчисления.
Введение
Потребность в счете возникла у людей с давних времен. Ученые археологи нашли много записей времен пещерного человека, с помощью которых они обозначали количество убитых животных, добытых шкур и собранного урожая. Так в 1937 году в Моравии была найдена кость с 55 зарубками. По мнению ученых они обозначали количество бизонов добытых вождем племени.
С развитием технологий, счет находил применение во всех областях социальной жизни человечества – астрономии, налогообложении и промышленности. Сейчас вычисления активно используются в информатике для представления информации в электронно-вычислительных машинах. В этой статье вы узнаете, что такое система исчисления, изучите основные определения, которые помогут вам лучше разобраться в теме, выясните, что такое позиционные и непозиционные системы исчисления и чем они отличаются.
Основные положения
Для того чтобы разобраться что такое системы исчисления ниже приведены главные понятия, которые вам предстоит понять и запомнить. Без них вы просто не сможете двигаться дальше. Итак…
Число – абстрактная мера измерения количества чего-либо.
Цифры — знаки, с помощью которых мы представляем число.
Системой исчисления – называется совокупность правил записи чисел, с помощью набора цифровых знаков.
Теперь я попробую объяснить смысл этого определения для чайников. У вас есть набор символов – необязательно это могут быть числа, которые с помощью неких приемов и правил представляются как цифровой «код».
Алфавит (он же код) – набор знаков, используемых для записи числа.
Числовой разряд – место “позиция” знака (цифры) в числе.
После того как вы разобрались в том, что здесь написано можно перейти к следующему пункту.
Классификация
Системы исчисления можно разделить на три вида – позиционные, непозиционные и смешанные.
Позиционные
Изобретение данного вида исчисления приписывают древним шумерам. Здесь значение цифры зависит от того, какую позицию она занимает в числе. В качестве примера возьмем число девятнадцать. После перестановки знаков местами получится девяносто один.
Примеры позиционных систем счислений и их использование в математике и информатике
- Десятичная – все вы её прекрасно знаете и изучали с первого класса. В качестве алфавита здесь используются цифры от 0 до 9.
- Двоичная – счисление введенное в семнадцатом веке великим математиком Вильгельмом Лейбницем. В данный момент нашло широкое применение в персональных компьютерах и цифровой технике. Состоит всего из двух знаков 0 и 1.
- Третичная – состоит из 0, 1 и 2 либо латинских букв A, B, C. На данный момент нигде не применяется. Однако в 1959 году Московским университетом на её основе был выпущен малый компьютер “Сетунь”.
- Восьмеричная – счисление, широко применяющееся в высокоуровневых языках программирования (например, Java и Python) и разработке цифровой аппаратуры. Свою популярность заслужила из-за легкого перевода в цифровой (двоичный) код. Состоит из цифр от 0 до 7.
- Двенадцатеричная – распространена на территории Индии и Тибета. Счисление построено на пальце-фаланговом методе счета, при котором большим пальцем считают фаланги той же руки. Попробуйте сами посчитать фаланги, и вы убедитесь, что их действительно 12. Постепенно полностью заменяется десятичной.
- Шестнадцатеричная – счисление используется в низкоуровневых языках программирования (язык Assembler’а) в информатике. Также в 16-ом виде представляются символы в стандарте Юникода. В её алфавит входят числа от 0 до 9 и латинские буквы A, B, C, D, E и F.
Непозиционные
Здесь позиция цифр значения не имеет, а количественный эквивалент числа определяется начертанием цифры.
Примеры непозиционных нумераций
- Унарная – состоит из одного символа. В пример можно привезти зарубки на дереве. Также, скорее всего, каждый из вас видел, как в фильмах люди заключенные в тюрьме считают дни своего заключения, рисуя палочки на стене. Всё это примеры унарного исчисления.
- Римская – состоит из латинских букв I,X,L,D и M. Нумерация построена с помощью сложения и вычитания. Здесь договорились, что для сложения после большей цифры надо ставить меньшую, а для того чтобы отнять, меньшую цифру ставят перед большей. Например, XI- 11, а IX-9.
- Египетская – непозиционная нумерация, где цифры представлялись иероглифами.
Смешанные
Этот материал в школьную программу не входит и его достаточно сложно объяснить школьникам, но я все-таки попробую. В смешанной системе исчисления числа с основанием P можно представить числами с основанием Q. Также здесь должно выполняться неравенство Q<P.
0,1,1,2,3,5,8…
Что такое основание
После того как мы разобрали классификацию, можно рассказать про такое понятие как основание. Основание – количество знаков, которые используются для отображения символов в данной системе счисления. В математике и информатике записывается так:
Читается как “Двадцать пять по основанию десять” и значит то, что в данном алфавите имеется десять знаков для записи числа. Данное определение используется только в позиционных системах исчисления. Запись с нижним индексом используется для удобства, при работе с числами нескольких видов.
Заключение
На этом всё, теперь вы знакомы с таки понятием как система исчисления в информатике. Знаете, какие они бывают (позиционные и непозиционные), на какие группы делятся, ознакомлены с основными положениями и знаете что такое основание. После освоения этого материала можете смело приступать к другим темам – таким как перевод из одной системы в другую и выполнение арифметических операций. А также, в этом разделе, вы найдете несколько интересных статей. Например, про то, как представляется память в персональном компьютере или историю непозиционных чисел.