Логические операции. ➞ Что такое конъюнкция, дизъюнкция, импликация

Тот, кто хочет подробно разбираться в цифровых технологиях должен понимать основы такой темы, как алгебра логики. В этой статье будут разобраны основные определения, а также показаны самые важные логические операции, такие как конъюнкция, дизъюнкция, импликация и т.д.

Основные положения

Для начала следует разобраться, для чего нужна алгебра логики – главным образом, этот раздел математики и информатики, нужен для работы с логическими выражениями и высказываниями.

Термин

Логическим высказыванием называется утверждение (или запись), которое мы можем однозначно классифицировать, как истинное или ложное (1 или 0 в информатике).

Примером таким высказываний будут являться:

  1. Сегодня светит солнце;
  2. 5 > 3;
  3. Химическая таблица элементов была разработана Д.И. Менделеевым.

Отсюда можно сделать вывод, что в русском языке логическими высказываниями являются повествовательные предложения, однако далеко не все повествовательные предложения являются логическими высказываниями. Пример: химия скучный предмет. Здесь мы не можем однозначно установить ложно ли это выражение или истинно.

Логические высказывания делятся на два типа — простые и сложные.

  • Простые высказывания состоят из одного утверждения, которые мы можем однозначно охарактеризовать, как истинные или ложные.
  • Сложные же состоят из нескольких таких утверждений, которые объединены с помощью логических операций (рассмотрены дальше).

В алгебре логики, как простые, так и сложные высказываниями описываются булевыми выражениями.

Термин

Булево выражение – это символическое (знаковое) описание высказывания.

В таких выражениях простые высказывания выступают в роли переменных и обозначаются буквами латинского алфавита, а операции обозначаются при помощи специальных знаков. После выполнения всех операций и упрощения выражения мы получаем результат, на основании которого строится таблица истинности.

Это интересно   Файл - это... Что такое файлы и папки 📂

Операции

Ниже рассмотрим основные операции, которые применяются в булевой алгебре. Их хватит, чтобы упростить львиную долю всех выражений, которые Вам встретятся.

Конъюнкция

Конъюнкция (булево умножение) — функция, по своему смыслу приближенная к союзу «И». При выполнении конъюнкции результат истинен (равен 1) тогда и только тогда, когда истинны ВСЕ переменные. Если хотя бы одно из высказываний ложно, то ложно и всё выражение (равно 0).

Функция может работать как с двумя операндами (высказываниями), так и с тремя, четырьмя и т.д. В математике обозначается с помощью знаков ​\( \wedge \) и &. Обозначение в языках программирования AND, &&. Таблица истинности для двух операндов:

Конъюнкция

Дизъюнкция

Дизъюнкцией называется функция булева сложения. По смыслу дизъюнкция приближена к союзу «ИЛИ». В результате выполнения данной функции результирующие выражение является истинным, когда хотя бы одно из высказываний в этом выражении тоже истинно.

Булево сложение, также как и умножение, может работать с произвольным количеством операндов. В математике обозначается как V, а в программировании с помощью OR или I.

логические операции дизъюнкция

Инверсия

Логическое отрицание – функция, работающая с одним высказыванием, и заменяющая истину на ложь, а ложь на истину. В математике обозначается с помощью черты над значением, а в программирование и информатике с помощью слова NOT.

инверсия переменных

Импликация

Также называется булевым следованием. В русском языке данной функции соответствует оборот «Если …, то …». Например, если на улице гремит гром, то стоит пасмурная погода.

Результирующее значение будет ложным только тогда, когда из истинного высказывания будет следовать ложное следствие. Имеет обозначение в виде стрелочки \( \Longrightarrow \). Важно: импликация работает только с двумя операндами.

логические операции импликация

Эквивалентность

Булева тождественность или равенство. На простом языке будет обозначено как «… эквивалентно (равно) …». Результат будет истинным тогда, когда все значения в выражении будут иметь одинаковую истинность.

Обозначается с помощью трех черточек или ⟺.

эквивалентность

Порядок выполнения операций

Логические операции выполняются в следующем порядке:

  1. Первой выполняется инверсия переменных.
  2. Вторым выполняется конъюнкция (булево умножение);
  3. Третьим номером идет дизъюнкция (сложение);
  4. Затем выполняется импликация;
  5. Самым низким приоритетом выполнения обладает эквивалентность.

Если в формуле указаны скобки, то порядок выполнения действий в скобках точно такой же, как написано выше.

Пример

Дано два отрезка B = [2,10], C = [6,14]. Из предложенных вариантов ответа выберите такой отрезок A, что формула \( ((z \in A) \Longrightarrow (z \in B)) \vee (z \in C) \) истинна при любом значении z. Варианты ответа:

  1. [0,3];
  2. [3,11];
  3. [11,15];
  4. [15,17].

Решение: Подставим в уравнение \( ((z \in A) \Longrightarrow (z \in B)) \vee (z \in C) \) =1 значения B и C и составим таблицу истинности:

Получившаяся формула \( ((z \in A) \Longrightarrow (z \in [2,10])) \vee (z \in [6,14])=1 \). По условию ​​​\( z \in A \)=1.

Таблица истинности для всех отрезков:

Логические операции таблица истинности

Ответ: A = [3,11].

Видео

Заключение

Вот Вы и познакомились с основными логическими операциями и понятиями и знаете, что такое булево сложение и умножение. Если вас заинтересовала данная тема, то можете изучить булевы законы. Эти законы не проходятся в рамках школьной программы и служат для упрощения сложных выражений.

Оцените статью
5.00(3голоса)
TvoyaPeCarnya.ru
Добавить комментарий

Вставить формулу как
Блок
Строка
Дополнительные настройки
Цвет формулы
Цвет текста
#333333
Используйте LaTeX для набора формулы
Предпросмотр
\({}\)
Формула не набрана
Вставить